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A response surface methodology approach to wind-tunnel testing of aircraft with complex configurations is being

investigated at the Langley full-scale tunnel as part of a series of tests using design of experiments. An exploratory

study was conducted using response surface methodology and a 5% scale blended-wing-body model in an effort to

efficiently characterize aerodynamic behavior as a function of attitude and multiple control surface inputs. This

paper provides a direct comparison of the design of experiments/response surface methodology and one factor at a

time methods for a low-speed wind-tunnel test of a blended-wing-body aircraft configuration with 11 actuated

control surfaces. A modified fractional factorial design, augmented with center points and axial points, produced

regression models for the characteristic aerodynamic forces and moments over a representative design space as a

function of model attitude and control surface inputs. Model adequacy and uncertainty levels were described using

robust statistical methods inherent to the response surface methodology practice. Experimental goals included the

capture of fundamental stability and control data for simulation models and comparisons to baseline data from

recent one factor at a time tests. Optimization is demonstrated for control surface allocation for a desired response. A

discussion of highlights and problems associated with the test is included.

Nomenclature

CA = axial force coefficient
Cl = rolling moment coefficient
Cm = pitching moment coefficient
CN = normal force coefficient
Cn = yawing moment coefficient
Cy = side force coefficient
� = angle of attack in degrees, factor A
� = sideslip angle in degrees, factor B
�Lrud = left winglet rudder deflection in degrees, factor H,

positive trailing edge left
�L25 = left wing 2–5 ganged elevon deflection in degrees,

factor E, positive trailing edge down
�L67 = left wing 6–7 ganged lower elevon deflection in

degrees, factor F, positive trailing edge down
�L89 = left wing 8–9 ganged upper elevon deflection in

degrees, factor G, positive trailing edge down
�R25 = right wing 2–5 ganged elevon deflection in degrees,

factor C, positive trailing edge down
�1 = ganged left and right elevon 1 deflection in degrees,

factor D, positive trailing edge down

I. Introduction

T HE process of wind-tunnel testing aircraft has the overall
objective of characterizing aerodynamic stability, control, and

performance. Changes are made to independent variables (factors)
such as angle of attack, sideslip angle, and control surface deflections
while the six aerodynamic force andmoment responses are recorded.
The traditional approach to testing is to vary one factor at a time
(OFAT), holding all other factors as “constant.” Researchers will
then pursue a course of experimentation aimed at sequentially
modifying other variables to obtain a mapping of the aerodynamic
characteristics of interest. This approach requires that the entire
system, which consists of the wind tunnel, the aircraft balance, and
the data acquisition system, be completely stable throughout the
entire test entry which may last several weeks. Any errors that result
from variations in the system are confounded with precision errors
and are inseparable. In addition, if two or more inputs interact to
affect a response, the OFAT experimentation approach will not
easily detect these important contributions to response prediction and
system understanding.

Design of experiment (DOE) methods [of which response surface
methodology (RSM) is a subset] approach an experiment by
identifying all desired factors (independent variables) and all desired
responses (outputs). Once all factors and responses are identified, a
randomized run schedule is formulated that provides statistically
based mathematical models of the responses in terms of the factors.
The objective is to characterize the relationship between changes in
system performance measures due to corresponding changes in
system input factors. Bias errors due to uncontrolled or unknown
system variationsmay be guarded against and uncertainty levelsmay
be accurately estimated. Inherent to the DOE methodology is the
construction ofmathematical models detailing the response behavior
being studied, capable of predicting performance measures over the
factor design space studied.

Wind-tunnel testing often presents constraints to designs that are
the staple of traditional industrial experimentation. In this study
several control surface input factor settings were limited by
interference with one another, requiring a departure from established
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RSM designs. Automated control surfaces are well suited to a fully
randomized test program but are nearly always a source of increased
set point error when compared to a “fixed bracket” style surface
setting. The RSM model presented here had to be robust to these
potential sources of error. This study focused on proving test
methods and is not an all-inclusive aerodynamic characterization of
the chosen aircraft. The overall goal of the study presented here is to
provide an efficient method of data collection for modeling and for
aircraft aerodynamic database and simulation development.

II. Aircraft Configuration and Wind-Tunnel
Model Design

The aircraft configuration used in this study was a trijet blended-
wing-body (BWB) concept developed by the Boeing Company. The
BWB concept evolved though a series of NASA funded design
studies conducted by the McDonnell Douglas Company during the
early 1990s [1]. The concept has shown potential for improved
efficiency over the classic tube and wing configuration with
reductions in both takeoff weight and fuel burn [2]. The Boeing
Company developed this BWB configuration (BWB-450L)
following their merger with the McDonnell Douglas Corporation
in 1997. This design is the property of the Boeing Company and as
such the geometry definition cannot be released without the
permission of the Boeing Company. A three-view of the 5% scale
model used in this study is shown in Fig. 1. The model has three
pylon-mounted nacelles located on the upper surface of the aft

centerbody. Each nacelle housed a pneumatic ejector connected to a
high-pressure air supply to provide simulated thrust. The center
nacelle could also rotate �8 deg about the vertical body axis to
simulate directional thrust vectoring. The control surfaces consist of
18 elevons distributed along the trailing edge, rudders on each
winglet, and leading edge slats, as shown in Fig. 2. The two outboard
elevons (labeled as “8 upper/6 lower” and “9 upper/7 lower”) split to
serve as both elevons and drag rudders. Because of weight
constraints the model was limited to 11 actuators. This required
several of the control surfaces to be ganged to a single actuator so
they move in unison as if they were a single combined surface. This
was the case with elevons 2–5, the upper elevons 8 and 9, and the
lower elevons 6 and 7.

III. Static Testing Experiment Details

The test was conducted in two phases. The first phase used the
classical OFAT approach over an angle-of-attack range from
�10–30 deg and �10 deg of sideslip. The second phase was
exploratory in nature and employed a DOE/RSM approach over a
limited angle-of-attack range from 5 to 10 deg and �5 deg of
sideslip. Comparisons of the two methods were conducted over this
limited angle-of-attack and sideslip range. This wind-tunnel model
was designed for a subsequent follow-on free-flight test in the same
facility and was consequently equipped with remotely controlled
actuators to drive the control surfaces. The remotely actuated surface
capability made this test an ideal candidate for using a DOE/RSM
approach. The objectives of the overall static test program were to
measure the basic aerodynamics and control derivatives of the
model, measure the thrust effects, and measure the effect of an
attached cable in the free-flight test (umbilical cable).

A. RSM Experiment Objectives

Because the current study was part of a larger OFAT study,
comparisons between the two approaches could be fairly judged. In
addition previous data were available. The goals of this exploratory
experiment can be summarized as follows.

1) Prove the feasibility of an RSM approach to rapidly gather an
aerodynamic stability and control data set suitable for use in flight
simulation software.

2) Compare the RSM approach to traditional methods in terms of
resources required, resultingmathmodels, response uncertainty, and
value added.

3) Explore the utility of numerical optimization routines for
control surface allocation.Fig. 1 5% model of blended wing body.

Fig. 2 BWB configuration control surfaces.
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B. Facility

Old Dominion University, working under a memorandum of
agreement with NASA Langley Research Center, operates the
Langley full-scale tunnel (LFST). The open-jet test section is semi-
elliptical in cross section with a width of 18.29 m (60 ft) and a height
of 9.14 m (30 ft). The ground board is 13 m (42.5 ft) wide by 16 m
(52.3 ft) long and features a turntable with a diameter of 8.7 m
(28.5 ft). Power is supplied by two 3 MW (4000 hp) electric motors
driving two 11 m (36 ft) diameter four-bladed wooden fans. The
current maximum speed is limited to 210 rpm, which is about
130 kph (�80 mph) in the test section [3].

C. Model Mounting and Data Acquisition

The model support system used in this experiment consists of a
large T structure with a long rear-entry sting and is shown in Fig. 3.
Pitch setting is accomplished by articulation of the sting about the
horizontal member. The entire T structure is rotated by the turntable
to achieve sideslip settings. The dynamic pressure for the RSM test
was nominally 383 Pa (8 psf).

The model forces and moments were measured with an internal
six-component strain gauge balance sampled at 10 Hz. The
measurements were averaged over a 20 s sample period for each data
point. The accuracy of the balance at a nominal dynamic pressure of
383 Pa (8 psf) is given in Table 1. Corrections for flow angularity
were applied to the data and obtained by a flow survey of the test
section with a spatial resolution of 0.915 m (3 ft) [4].

IV. Use of Design of Experiments

The formal design of experiments in its broadest sense is a process
for planning an experiment so that appropriate data can be collected
and analyzed by statistical methods, resulting in valid and objective
conclusions [5,6]. A test matrix benefits from the three basic tenets of
DOE: replication, randomization, and blocking. Randomization is
the cornerstone of statistical methods in experimental design and
requires that both the experimental factor choices and the order of the
runs are randomly determined. Randomization also assists in
averaging out the effects of extraneous factors that may be present.
Replication is the repetition of runs within the basic experiment.
Replication of design points allows the researcher to determine an
internal estimate of system noise and uncertainty. Blocking is a
technique used to improve the precision with which comparisons
among the factors of interests are made. Blocking is also used for
reducing the variability transmitted through nuisance factors, that is,
factors that may influence the experimental response but that are of
no direct interest. For example, variations in wind-tunnel
measurements are often encountered when comparing overnight
runs or shifts. Assigning groups of runs to blocks helps separate the
shift-to-shift variability due to atmospheric conditions or personnel
changes, or from changes in the force balance precision. RSM is a
refinement to DOE and poses three general objectives in industrial
experimentation:mapping a response surface over a particular region

of interest, optimization of the responses, and selection of operating
conditions to achieve specifications or customer requirements [7].

Analysis of the experimental data is performed using statistical
hypothesis testing and regressionmodel building so that the response
values can be accurately estimated or predicted using empirical
models. Thesemodels are usually low-order polynomial functions of
the input variables (factors) but, with enough degrees of freedom in
the test matrix, can be of higher order. The model is also tested for
adequacy relative to fitting data (lack-of-fit test). One of the greatest
benefits in using DOE/RSM methods versus the traditional OFAT
methods is the ability to include interaction terms in the analysis. The
OFAT method allows only for one variable to be changed at a time,
therefore it typically evaluates main effects. The DOE/RSMmethod
allows, and partially requires, the change of more than one factor
simultaneously, thus allowing for the discovery of interaction
between variables. For example, OFAT testing can easily find the
effect of the deflection of a trailing edge control surface on pitching
moment over a yaw sweep. DOE testing can efficiently identify any
and all interaction effects on pitching moment, between any or all
deflected control surfaces, over any yaw angle within the design
space. The relative magnitudes of the model coefficients give direct
feedback as to the importance of the interaction effects to the
prediction of the responses.

Model design using a classical sequential DOE approach typically
starts by allocating a subset of design points for building a linear
model based on two-level factor settings. These factorial based
models are then tested for fit and if found inadequate are augmented
with additional points, yielding a quadratic model. Classical RSM
second-order designs focus on optimizing the design matrix for
prediction variance and avoiding correlation over spherical or
cuboidal experimental design spaces. If higher-order models are
necessary, second-order designs can be augmented with additional
test points to fit the high-order terms.

The advantage to using designed experiments in wind-tunnel
testing has been explored in recent years and is gaining in popularity
[8–11]. The objective of this paper is to try and add to the growing
number of case studies and not to provide a comprehensive treatise
on the use of designed experiments.

V. Experiment Design

A. Factor Choices and Constraints

Resources for this exploratory project were limited so that a subset
of representative factors was chosen. Angle of attack and sideslip
angle were of course required factors for longitudinal and lateral
aerodynamic characterization. Interest focused on possible
interactions between control surfaces with particular regard to those
located adjacent to each other. It was decided to choose the left (port)
trailing edge elevons and winglet rudder and to include right
influences using the right 2–5 ganged elevons. A mechanical
constraint is present due to the collocation of lower surfaces 6–7 and
upper surfaces 8–9. These can be deployed as drag rudders with 8–9
deflected up and 6–7 deflected down or as elevons with both
deflected in the same direction. The deflection constraint which
arises from their actuation limits and interference is given as
�L67–�L89 > 5 deg.

The range of angle of attack was chosen so as to bracket the cruise
condition and avoid stall, and a small sideslip range was chosen to
provide yaw sensitivity. Control surface limits were chosen to coverFig. 3 BWB model mounted in Langley full-scale tunnel.

Table 1 Internal strain gage balance uncertainties at

test dynamic pressure of 8 psf

Response 95% confidence half-interval

CA 0.00115
Cy 0.0018
CN 0.00252
Cl 0.00006
Cm 0.00012
Cn 0.00007
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the full designed deflection range. However, in practice mechanical
limits of the model limited the deflection of elevons 8–9 and 6–7 to
less than their design limits. The eight factors, their nominal design
levels, and constraints are summarized in Table 2.

B. Traditional Augmented Factorial Model Design

Two-level factorial designs are foundational to designed
experiments because they provide an efficient experimental strategy
to explore first-order effects and two-factor interactions. In these
designs, the factors of interest are changed between predetermined
high and low levels, often denoted in coded units as the�1 and �1
levels. The first step to building a design requires the experimenter to
identify the region of interest and the region of operability. The
region of interest defines the upper and lower limits of the factor
settings inwhich an empirical model is desired, whereas the region of
operability is defined by the upper (�1 level) and lower (�1 level)
limits of the factor settings that can be achieved safely. In the current
study, these regions are coincident and using a two-level factorial
design results in a cuboidal design space, referred to as a
hypercuboidal region in eight-dimensional space. Augmenting a
two-level factorial design with center points (design points taken at
the center of each factor range) allows for the detection of curvature,
which may indicate that a first-order plus two-factor interaction
model is not sufficient in capturing the factor-response relationship.
Furthermore, the center points are replicated to provide an internal
estimate of the experimental error, the inherent process variability or
process noise, allowing for a determination of individual factor effect
significance aiding in the construction of parsimoniousmodels [5,6].

If curvature is detected, then the design can be further augmented
with design points, known as axial points, which together with the
factorial and center points support the estimation of a complete
second-order model. The resulting design is a classic central
composite design (CCD) and is classified by the distance from the
design center to the axial points [7]. The term axial indicates that
these design points lie on the factor axes of the design space, denoting
that all other factor levels are set to zero. Two axial points are added
for each factor. In this experiment, a distance of one was employed
resulting in a face-centered CCD (FCD). A distance of onemaintains
the convenience of only three discrete level settings for each factor.

Employing a full two-level factorial design in eight factors results
in 28 � 256 design combinations. This design supports the
estimation of all main effects, and all multiway interactions up to and
including a single eight-factor interaction. Making the assumption
that many higher-order interactions are not necessary to estimate an
adequate empirical model allows the full two-level factorial to be
fractionated, resulting in fewer experimental runs. In this study, a 1

2

fraction was generated, known as a 2�8�1�, requiring 128 runs. The
fractionation is performed in a manner that retains the ability to
uniquely estimate the maximum number of lower-order effects, a
concept known as minimum aberration. In a sense, a minimum
aberration design minimizes the impact of the reduced information
obtained from the fractionation as compared to executing the full
factorial. The resulting 128-run fractional design supports the unique
estimation of all main effects, two-factor, and three-factor
interactions assuming that four-way and higher interactions are
negligible.

C. Final Model Design

To accommodate the particular mechanical constraints due to the
test article configuration, the fractional factorial designwasmodified
manually resulting in an asymmetric design space. The constraint
and subsequent model modification are shown in two-dimensional
space in Fig. 4. Here the two affected factors are first shown in an
unconstrained FCD. Applying the constraint results in a clipping of
the top left corner of the square so as to move the top left factorial
point and the upper face-centered axial to the right. As a result, the
orthogonality of the design was disrupted producing overlapping
information when estimating the factor effects. Collinearity refers to
the amount of overlap and can be quantified by computing the
variance inflation factor (VIF) for eachmodel term. In general, a VIF
of less than 10 is desirable, which was achieved in the modified
design [7]. In this case, modifying a classical design was successful
because the constraints were not too severe. Consequently, many of
the desirable properties of the classical design were retained. Before
the test the constrained FCD model was evaluated using a BWB
flight simulation model developed from previous testing [12].

To summarize, the experimental design to study the eight
constrained factors is based on a 128 run fractional factorial
combined with 16 face-centered axial points and features eight
replicated center points, requiring a total of 152 runs. The design was
conducted in two blocks, the first with the 128 factorial combinations
and four centers, and the second with the 16 axial points and four
centers. For brevity, the full design is not included in this report. This
final design represents an efficient strategy to estimate the 45 terms in
a full second-order model in eight factors. Moreover, it provides
sufficient degrees of freedom to estimate the experimental error
allowing for an objective assessment of the adequacy of a second-
order model.

VI. Results and Discussion

A. Analysis of Results

The data collected were analyzed using least squares estimation
with the aid of Design ExpertTM, a commercially available program.
First, a tentative regression model with all factors was developed for
each of the responses up to and including three factor interactions.
The purpose of this analysis is to determine which factors,
multifactor interactions, and higher-order polynomial terms affect
each response to develop an empirical model that accurately predicts
response values for any factor settings between the low and the high
levels. Using the mean squares for each model term versus the mean
square for error, an F test is performed to determine statistical
significance. The model is consequently refined by dropping
insignificant terms and a table of significance, called the analysis of
variance (ANOVA) table, is then computed.An example for the axial
response is shown in Table 3. The model is considered tentative until
the model assumptions of normally, independently distributed errors
with constant variance are tested. Themodel residuals, the difference
between model response values and the regression model predicted
response values, are estimates of the true model errors. Normality is
evaluated by plotting rank-ordered observations against their
observed cumulative frequency and is somewhat subjective. No
problems were encountered with normality in this study, however,
the level of noise was significant. Plotting residuals versus predicted
values provides a check for constant variance, a fundamental
requirement to the model fitting. Finally, plotting residuals versus

Table 2 Factor levels and constraints

Factor Factor ID Low Center High Constraints

� A 4 7 10 None
� B �5 0 5 None
�R25 C �30 �5 20 None
�1 D �30 �5 20 None
�L25 E �30 �5 20 None
�L67 F �30 10 50 F � G> 5
�L89 G �50 �15 20 F � G> 5
�Lrud H �20 5 30 None

Fig. 4 Face-centered design modifications.
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run checks for systematic variation over time that may mean the
assumption of independence has been violated. No structure in the
residuals should be observed and they should remainwithin an upper
and lower limit of 3 standard deviation units. No anomalies were
found other than a larger than expected noise level as shown in the
example of Fig. 5. For the sake of brevity all remaining diagnostic
plots were omitted from this publication. Having passed the
diagnostic checks, a regression model for each of the aerodynamic
coefficient responses was now available. Note that the term
definitions are given under the nomenclature section and that model
hierarchy was maintained. A 95% confidence half-interval on the
response is computed by taking 2 times the square root of the mean
square for error (shown under the heading of “residual” in the
example of Table 3). Uncertainty values are presented in Table 4 for
each of the responses and include all control surface set point errors,
force balance precision, and associated data acquisition system
uncertainty.

B. Comparisons to OFAT Data

Direct comparisons between OFAT and RSM responses are
presented in Table 4. Average differences between existing OFAT
data points and RSM model predicted values are shown to lie well
within the confidence intervals established by the uncertainty
estimates from the RSM study. As a graphical example consider the
pitching moment and normal force response surfaces as a function of
angle of attack and deflection of the left ganged elevon 2–5 shown in

Figs. 6 and 7. As noted in Table 4 and shown in Fig. 6 the RSM
normal force predicted values were on average less than the OFAT
data. Figure 7 shows that the corresponding RSM pitching moment
values were on average greater than the OFAT data points. These
differencesmay be due to system variances that are not accounted for
in the OFAT approach. Comparison of the number of data points
used with the two test methods illustrates the primary difference in
these approaches. The OFAT test matrix, which was designed to
provide a desired data density, resulted in 287 points in the same
design space as the DOE/RSM covered with 128 points. The OFAT
desired data density for stability and control characterization is
chosen with increments of every 2–4 deg angle of attack in the linear
lift region and every 1 or 0.5 deg in the nonlinear regions of lift, drag,
or pitching moment. This data density requirement is empirically
based onminimizing the interpolation error between data points. The
DOE/RSM test matrix, which was designed to provide a desired
model also provides multiple-factor interactions not directly
available from the OFAT data.

Table 3 Example ANOVA table

ANOVA for axial force coefficient response surface
Source Sum of squares DF Mean square F value Prob> F

Block 0.005985 1 0.005984528 —— ——

Model 0.229783 24 0.009574301 4653.35 <0:0001
A 0.173022 1 0.173022038 84092.96 <0:0001
B 2.06E-05 1 2.06319E-05 10.03 0.0019
C 0.019821 1 0.019820604 9633.30 <0:0001
D 0.004135 1 0.00413513 2009.77 <0:0001
E 0.020453 1 0.02045337 9940.84 <0:0001
G 0.001459 1 0.001458836 709.03 <0:0001
H 5.44E-05 1 5.43938E-05 26.44 <0:0001
A2 0.000104 1 0.000104421 50.75 <0:0001
C2 7.5E-05 1 7.50489E-05 36.48 <0:0001
D2 0.00018 1 0.000179928 87.45 <0:0001
E2 0.000168 1 0.000167511 81.41 <0:0001
G2 1.47E-05 1 1.4661E-05 7.13 0.0086
AC 0.000714 1 0.000713931 346.99 <0:0001
AD 4.07E-05 1 4.07467E-05 19.80 <0:0001
AE 0.000587 1 0.000586571 285.09 <0:0001
AG 9.73E-06 1 9.7253E-06 4.73 0.0315
BC 9.7E-06 1 9.69944E-06 4.71 0.0318
BD 8.14E-06 1 8.13558E-06 3.95 0.0489
BE 9.6E-06 1 9.60243E-06 4.67 0.0326
BG 8.69E-06 1 8.69074E-06 4.22 0.0419
CD 2.21E-05 1 2.2106E-05 10.74 0.0013
CE 0.000195 1 0.000194804 94.68 <0:0001
CG 1.67E-05 1 1.67106E-05 8.12 0.0051
DE 4.18E-05 1 4.18403E-05 20.34 <0:0001
Residual 0.000263 128 2.05751E-06 —— ——

Cor. total 0.236031 153 —— —— ——

Run

R
es

id
ua

ls

-0.0211

-0.0001

0.0011

0.0123

0.0233

Run

R
es

id
ua

ls
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-0.0001

0.0011

0.0123

0.0233

Fig. 5 Residuals of CN response.

Table 4 Comparisons of average response differences and

uncertainty levels

Response 95% confidence interval Average difference RSM–OFAT

CA 0.0057 0.0011
Cy 0.0073 0.0028
CN 0.0365 �0:0291
Cl 0.0066 0.0020
Cm 0.0069 0.0062
Cn 0.0015 0.0000

Fig. 6 RSM to OFAT comparison, CN .

Fig. 7 RSM to OFAT comparison, Cm.
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C. Interactions and Optimization

An interaction occurs when one factor produces an effect on the
response that is dependent on the setting of another factor. In this
study, interest focused on the probable synergistic behavior of
adjoining trailing edge control surfaces. An example is seen in the
normal force response to �R25 and �1 shown in Fig. 8. This interaction
plot shows that the normal force due to deflecting both surfaces is
greater than the sum of either surface deflected alone. As a second
example consider the rolling moment response (Fig. 9) due to �L25
and �67. Again the sum of the individual responses is less than their
combined effect. Although this is not surprising perhaps, it is
identified directly and quantified with the RSM methodology.

Aircraft with complex control surface configurations present an
interesting opportunity in that choices arise in the allocation of
surfaces to achieve specific control objectives. The RSM model
inherently includes all the effects of all surface deflections for any
response, ideal for optimization routines. As an example, consider
the yawing moment response for this flying wing design. The
interaction plot for the port wing split surfaces is shown in Fig. 10
including the excluded response area resulting from the constraint.
An example of multiple response constrained optimization was
generated using a desirability approach tomaximize yawingmoment

response while minimizing roll moment response [13]. Equally
weighted goals are presented in Table 5 where it should be noted that
the yawing moment is minimized due to the desire to achieve the
most negative value. In this example the attitude, starboard control
surfaces, and body elevon are fixed and the port control surfaces are
unconstrained. Results are presented as Table 6 where the best
solution is given by the highest desirability rating. The split surfaces
(drag rudder) are seen to be deflected for maximum drag and the
rudder for maximum yaw (magnitude) where the ganged 2–5
surfaces are used to “trim” for minimum roll.

D. Lessons Learned

The modified FCD specified control surface set points were
different in practice than in the design. Issues arose with actuator
positioning as well as manufacturing tolerances in control surface
fits. Post test analysis discovered that control surface potentiometer
readings showed that surface position had a relatively high variance
leading to the high estimates of uncertainty that have been presented.
Although neither of these problems is desirable, they did serve to test
the overall effectiveness of theRSMmethod in the presence of higher
than expected noise and further promote the use of methods that
inherently identify the overall uncertainty in an environment with
many variables both known and lurking (unknown).
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Fig. 10 Yawing moment response.

Table 5 Optimization constraints to maximize

yaw moment response with minimum roll

Name Goal Lower limit Upper limit

� Is equal to 6.00 5.1 11.4
� Is equal to 0.00 �5 5
�R25 Is equal to 0.00 �30 20
�1 Is equal to 0.00 �30 20
�L25 Is in range �30 20
�L67 Is in range �30 40
�L89 Is in range �35:85 19.2
�Lrud Is in range �20 30
Cl Is target� 0 —— ——

Cn Minimize —— ——

Table 6 Optimizer solutions

Solution �L25 �L67 �L89 �Lrud Cn, % best Cl=Cn, % Desirability

1 �6:44 40.00 �33:98 30.00 90.11 0.842 0.823
2 �11:54 40.00 �35:85 30.00 100.00 80.686 0.806
3 �10:10 40.00 �13:39 29.93 73.61 0.000 0.789
4 2.69 �26:45 �35:83 30.00 71.63 0.001 0.785
5 2.50 �25:08 �35:85 29.97 70.61 0.188 0.783
6 �3:22 17.80 �35:85 30.00 69.77 �0:003 0.781
7 1.45 �17:31 �35:85 29.88 65.91 �0:003 0.773
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VII. Conclusions

The modified face-centered design proved effective at character-
izing the aerodynamic behavior of the BWB for the subset of factors
chosen. The approach was robust to the unexpectedly high noise
levels attributed primarily to the control surface set point error.
Complex configurations can benefit greatly from response surface
methods in that a mathematical model for aerodynamic character-
ization is developed with minimum required runs and is well suited
for optimization.
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